Strictly singular and nearly weakly compact operators in Banach function spaces
نویسندگان
چکیده
منابع مشابه
Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces
An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملOrder-weakly Compact Operators from Vector-valued Function Spaces to Banach Spaces
Let E be an ideal of L0 over a σ-finite measure space (Ω,Σ, μ), and let E∼ stand for the order dual of E. For a real Banach space (X, ‖ · ‖X ) let E(X) be a subspace of the space L0(X) of μ-equivalence classes of strongly Σ-measurable functions f : Ω −→ X and consisting of all those f ∈ L0(X) for which the scalar function ‖f(·)‖X belongs to E. For a real Banach space (Y, ‖ · ‖Y ) a linear opera...
متن کاملCompact operators on Banach spaces
In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1973
ISSN: 1385-7258
DOI: 10.1016/1385-7258(73)90041-3